Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 13(6)2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37371532

RESUMO

An elevated level of circulating homocysteine (Hcy) has been regarded as an independent risk factor for cardiovascular disease; however, the clinical benefit of Hcy lowering-therapy is not satisfying. To explore potential unrevealed mechanisms, we investigated the roles of Ca2+ influx through TRPC channels and regulation by Hcy-copper complexes. Using primary cultured human aortic endothelial cells and HEK-293 T-REx cells with inducible TRPC gene expression, we found that Hcy increased the Ca2+ influx in vascular endothelial cells through the activation of TRPC4 and TRPC5. The activity of TRPC4 and TRPC5 was regulated by extracellular divalent copper (Cu2+) and Hcy. Hcy prevented channel activation by divalent copper, but monovalent copper (Cu+) had no effect on the TRPC channels. The glutamic acids (E542/E543) and the cysteine residue (C554) in the extracellular pore region of the TRPC4 channel mediated the effect of Hcy-copper complexes. The interaction of Hcy-copper significantly regulated endothelial proliferation, migration, and angiogenesis. Our results suggest that Hcy-copper complexes function as a new pair of endogenous regulators for TRPC channel activity. This finding gives a new understanding of the pathogenesis of hyperhomocysteinemia and may explain the unsatisfying clinical outcome of Hcy-lowering therapy and the potential benefit of copper-chelating therapy.


Assuntos
Cobre , Células Endoteliais , Humanos , Cobre/farmacologia , Cobre/metabolismo , Células Endoteliais/metabolismo , Células HEK293 , Proteínas de Transporte , Canais de Cátion TRPC/genética , Canais de Cátion TRPC/metabolismo , Cálcio/metabolismo
2.
Br J Pharmacol ; 176(19): 3845-3856, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31271653

RESUMO

BACKGROUND AND PURPOSE: Mibefradil, a T-type Ca2+ channel blocker, has been investigated for treating solid tumours. However, its underlying mechanisms are still unclear. Here, we have investigated the pharmacological actions of mibefradil on Orai store-operated Ca2+ channels. EXPERIMENTAL APPROACH: Human Orai1-3 cDNAs in tetracycline-regulated pcDNA4/TO vectors were transfected into HEK293 T-REx cells with stromal interaction molecule 1 (STIM1) stable expression. The Orai currents were recorded by whole-cell and excised-membrane patch clamp. Ca2+ influx or release was measured by Fura-PE3/AM. Cell growth and death were monitored by WST-1, LDH assays and flow cytometry. KEY RESULTS: Mibefradil inhibited Orai1, Orai2, and Orai3 currents dose-dependently. The IC50 for Orai1, Orai2, and Orai3 channels was 52.6, 14.1, and 3.8 µM respectively. Outside-out patch demonstrated that perfusion of 10-µM mibefradil to the extracellular surface completely blocked Orai3 currents and single channel activity evoked by 2-APB. Intracellular application of mibefradil did not alter Orai3 channel activity. Mibefradil at higher concentrations (>50 µM) inhibited Ca2+ release but had no effect on cytosolic STIM1 translocation evoked by thapsigargin. Inhibition on Orai channels by mibefradil was structure-related, as other T-type Ca2+ channel blockers with different structures, such as ethosuximide and ML218, had no or minimal effects on Orai channels. Moreover, mibefradil inhibited cell proliferation, induced apoptosis, and arrested cell cycle progression. CONCLUSIONS AND IMPLICATIONS: Mibefradil is a potent cell surface blocker of Orai channels, demonstrating a new pharmacological action of this compound in regulating cell growth and death, which could be relevant to its anti-cancer activity.


Assuntos
Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio/metabolismo , Mibefradil/farmacologia , Proteína ORAI1/antagonistas & inibidores , Proteína ORAI2/antagonistas & inibidores , Cálcio/análise , Cálcio/metabolismo , Bloqueadores dos Canais de Cálcio/química , Morte Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Células HEK293 , Humanos , Mibefradil/química , Proteína ORAI1/metabolismo , Proteína ORAI2/metabolismo , Imagem Óptica
3.
Free Radic Biol Med ; 47(2): 167-75, 2009 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-19393315

RESUMO

Diabetic vascular complications are related to a combination of oxidative stress and hyperglycemia. Here we investigate the effect and mechanism of soy isoflavones on oxidative stress-induced endothelial cell injury. Oxidative stress was modeled in primary cultured human umbilical vein endothelial cells by incubation with H(2)O(2) and high glucose. Genistein and daidzein protected the cells against H(2)O(2)-induced apoptosis and their protective actions were abolished by ICI 182780, an estrogen receptor antagonist. The inhibition of cell proliferation by oxidative stress was prevented by genistein and daidzein under normal glucose conditions, but they were less effective at high glucose levels. Genistein and daidzein upregulated the estrogen receptor ERbeta and increased Bcl-2 expression. Silencing of Bcl-2 with siRNA abolished the protection of genistein. Moreover, inhibition of the PI3K and Rho A/Rho kinase pathways by wortmannin and Y-27632 altered the effects of genistein and daidzein on cell survival. We conclude that oxidative stress-induced apoptosis and cell proliferation inhibition can be prevented by soy isoflavones via the regulation of ERbeta and Bcl-2/Bax expression and modulation of cell survival signaling, such as the PI3K pathway. These findings imply that multiple mechanisms are involved in the beneficial effects of soy isoflavone supplements for diabetic endothelial injury.


Assuntos
Células Endoteliais/efeitos dos fármacos , Genisteína/farmacologia , Glycine max/química , Isoflavonas/farmacologia , Estresse Oxidativo/fisiologia , Apoptose , Proliferação de Células , Células Cultivadas , Células Endoteliais/fisiologia , Endotélio Vascular/citologia , Estradiol/análogos & derivados , Estradiol/farmacologia , Receptor beta de Estrogênio/antagonistas & inibidores , Receptor beta de Estrogênio/metabolismo , Fulvestranto , Glucose/farmacologia , Humanos , Peróxido de Hidrogênio/farmacologia , Fosfatidilinositol 3-Quinases/fisiologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Veias Umbilicais/citologia , Quinases Associadas a rho/fisiologia , Proteína rhoA de Ligação ao GTP/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...